Estimating uncertainty in image-to-image networks is an important task, particularly as such networks are being increasingly deployed in the biological and medical imaging realms. In this paper, we introduce a new approach to this problem based on masking. Given an existing image-to-image network, our approach computes a mask such that the distance between the masked reconstructed image and the masked true image is guaranteed to be less than a specified threshold, with high probability. The mask thus identifies the more certain regions of the reconstructed image. Our approach is agnostic to the underlying image-to-image network, and only requires triples of the input (degraded), reconstructed and true images for training. Furthermore, our method is agnostic to the distance metric used. As a result, one can use $L_p$-style distances or perceptual distances like LPIPS, which contrasts with interval-based approaches to uncertainty. Our theoretical guarantees derive from a conformal calibration procedure. We evaluate our mask-based approach to uncertainty on image colorization, image completion, and super-resolution tasks, demonstrating high quality performance on each.
translated by 谷歌翻译
We propose an algorithm for learning a conditional generative model of a molecule given a target. Specifically, given a receptor molecule that one wishes to bind to, the conditional model generates candidate ligand molecules that may bind to it. The distribution should be invariant to rigid body transformations that act $\textit{jointly}$ on the ligand and the receptor; it should also be invariant to permutations of either the ligand or receptor atoms. Our learning algorithm is based on a continuous normalizing flow. We establish semi-equivariance conditions on the flow which guarantee the aforementioned invariance conditions on the conditional distribution. We propose a graph neural network architecture which implements this flow, and which is designed to learn effectively despite the vast differences in size between the ligand and receptor. We evaluate our method on the CrossDocked2020 dataset, attaining a significant improvement in binding affinity over competing methods.
translated by 谷歌翻译
通过分析医学图像来编写报告对于缺乏经验的从业者和经验丰富的医生来说是错误的。在这项工作中,我们介绍了改编预先训练的视力和语言模型来解释医学图像并以自然语言生成自动报告的Repsnet。 repsnet由一个编码器模型组成:编码器通过对比度学习将图像与自然语言描述对齐,而解码器则通过对编码图像进行调节和通过最近的邻居搜索检索的描述的先验上下文来预测答案。我们在视觉问题回答设置中提出问题,以处理分类和描述性的自然语言答案。我们在放射学图像数据集的两个医学视觉问题回答(VQA-RAD)和报告生成(IU-XRAR)的两个具有挑战性的任务上进行实验。结果表明,REPNET优于最先进的方法,在VQA-RAD 2018上具有81.08%的分类精度和IU-XRAY的0.58 BLEU-1得分。补充详细信息可从https://sites.google.com/view/repsnet获得
translated by 谷歌翻译
量子光学器件中的自发参数下转换是实现具有空间光模式的高维QUITIES的宝贵资源。主要开放挑战之一是如何在SPDC过程中直接生成所需的Qudit状态。通过高级计算学习方法可以解决这个问题;然而,由于通过考虑所有互动效应的完全可分辨率算法对SPDC过程建模的困难,进展有限。在这里,我们克服了这些限制并引入了物理受约束和可微分的模型,验证了针对形状泵浦梁和结构晶体的实验结果,能够在过程中学习每个交互参数。我们避免了我们物理模型随机性质引起的任何限制,并整合了在SPDC Hamiltonian下的演变的动态方程。我们解决了设计非线性量子光学系统的逆问题,该系统实现了降低的光子对的所需量子状态。使用不同空间模式之间的二阶相关性或通过指定所需的密度矩阵来定义所需状态。通过学习非线性卷全息图以及不同的泵形状,我们成功地展示了如何生成最大纠缠的状态。此外,我们通过主动改变泵浦光束的轮廓来模拟产生的量子状态的全光相干控制。我们的工作对于高维量子密钥分布和量子信息处理协议等新颖设计有用。此外,我们的方法可以容易地应用于控制SPDC过程中的其他光度的其他光度,例如光谱和时间特性,甚至可以用于具有类似相互作用Hamiltonian的冷凝物系统。
translated by 谷歌翻译
The performance of inertial navigation systems is largely dependent on the stable flow of external measurements and information to guarantee continuous filter updates and bind the inertial solution drift. Platforms in different operational environments may be prevented at some point from receiving external measurements, thus exposing their navigation solution to drift. Over the years, a wide variety of works have been proposed to overcome this shortcoming, by exploiting knowledge of the system current conditions and turning it into an applicable source of information to update the navigation filter. This paper aims to provide an extensive survey of information aided navigation, broadly classified into direct, indirect, and model aiding. Each approach is described by the notable works that implemented its concept, use cases, relevant state updates, and their corresponding measurement models. By matching the appropriate constraint to a given scenario, one will be able to improve the navigation solution accuracy, compensate for the lost information, and uncover certain internal states, that would otherwise remain unobservable.
translated by 谷歌翻译
We consider infinite horizon Markov decision processes (MDPs) with fast-slow structure, meaning that certain parts of the state space move "fast" (and in a sense, are more influential) while other parts transition more "slowly." Such structure is common in real-world problems where sequential decisions need to be made at high frequencies, yet information that varies at a slower timescale also influences the optimal policy. Examples include: (1) service allocation for a multi-class queue with (slowly varying) stochastic costs, (2) a restless multi-armed bandit with an environmental state, and (3) energy demand response, where both day-ahead and real-time prices play a role in the firm's revenue. Models that fully capture these problems often result in MDPs with large state spaces and large effective time horizons (due to frequent decisions), rendering them computationally intractable. We propose an approximate dynamic programming algorithmic framework based on the idea of "freezing" the slow states, solving a set of simpler finite-horizon MDPs (the lower-level MDPs), and applying value iteration (VI) to an auxiliary MDP that transitions on a slower timescale (the upper-level MDP). We also extend the technique to a function approximation setting, where a feature-based linear architecture is used. On the theoretical side, we analyze the regret incurred by each variant of our frozen-state approach. Finally, we give empirical evidence that the frozen-state approach generates effective policies using just a fraction of the computational cost, while illustrating that simply omitting slow states from the decision modeling is often not a viable heuristic.
translated by 谷歌翻译
In the present work we propose an unsupervised ensemble method consisting of oblique trees that can address the task of auto-encoding, namely Oblique Forest AutoEncoders (briefly OF-AE). Our method is a natural extension of the eForest encoder introduced in [1]. More precisely, by employing oblique splits consisting in multivariate linear combination of features instead of the axis-parallel ones, we will devise an auto-encoder method through the computation of a sparse solution of a set of linear inequalities consisting of feature values constraints. The code for reproducing our results is available at https://github.com/CDAlecsa/Oblique-Forest-AutoEncoders.
translated by 谷歌翻译
When robots learn reward functions using high capacity models that take raw state directly as input, they need to both learn a representation for what matters in the task -- the task ``features" -- as well as how to combine these features into a single objective. If they try to do both at once from input designed to teach the full reward function, it is easy to end up with a representation that contains spurious correlations in the data, which fails to generalize to new settings. Instead, our ultimate goal is to enable robots to identify and isolate the causal features that people actually care about and use when they represent states and behavior. Our idea is that we can tune into this representation by asking users what behaviors they consider similar: behaviors will be similar if the features that matter are similar, even if low-level behavior is different; conversely, behaviors will be different if even one of the features that matter differs. This, in turn, is what enables the robot to disambiguate between what needs to go into the representation versus what is spurious, as well as what aspects of behavior can be compressed together versus not. The notion of learning representations based on similarity has a nice parallel in contrastive learning, a self-supervised representation learning technique that maps visually similar data points to similar embeddings, where similarity is defined by a designer through data augmentation heuristics. By contrast, in order to learn the representations that people use, so we can learn their preferences and objectives, we use their definition of similarity. In simulation as well as in a user study, we show that learning through such similarity queries leads to representations that, while far from perfect, are indeed more generalizable than self-supervised and task-input alternatives.
translated by 谷歌翻译
While the capabilities of autonomous systems have been steadily improving in recent years, these systems still struggle to rapidly explore previously unknown environments without the aid of GPS-assisted navigation. The DARPA Subterranean (SubT) Challenge aimed to fast track the development of autonomous exploration systems by evaluating their performance in real-world underground search-and-rescue scenarios. Subterranean environments present a plethora of challenges for robotic systems, such as limited communications, complex topology, visually-degraded sensing, and harsh terrain. The presented solution enables long-term autonomy with minimal human supervision by combining a powerful and independent single-agent autonomy stack, with higher level mission management operating over a flexible mesh network. The autonomy suite deployed on quadruped and wheeled robots was fully independent, freeing the human supervision to loosely supervise the mission and make high-impact strategic decisions. We also discuss lessons learned from fielding our system at the SubT Final Event, relating to vehicle versatility, system adaptability, and re-configurable communications.
translated by 谷歌翻译
Deep learning models are known to put the privacy of their training data at risk, which poses challenges for their safe and ethical release to the public. Differentially private stochastic gradient descent is the de facto standard for training neural networks without leaking sensitive information about the training data. However, applying it to models for graph-structured data poses a novel challenge: unlike with i.i.d. data, sensitive information about a node in a graph cannot only leak through its gradients, but also through the gradients of all nodes within a larger neighborhood. In practice, this limits privacy-preserving deep learning on graphs to very shallow graph neural networks. We propose to solve this issue by training graph neural networks on disjoint subgraphs of a given training graph. We develop three random-walk-based methods for generating such disjoint subgraphs and perform a careful analysis of the data-generating distributions to provide strong privacy guarantees. Through extensive experiments, we show that our method greatly outperforms the state-of-the-art baseline on three large graphs, and matches or outperforms it on four smaller ones.
translated by 谷歌翻译